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Abstract The dimensional nonlinear Kompaneets (NLK) equation ut = x−2
[
x4(αux + βu + γ u2)

]
x

describes
the spectra of photons interacting with a rarefied electron gas. Recently, Ibragimov obtained some time-dependent
exact solutions for several approximations of this equation. In this paper, we use the nonclassical method to construct
time-dependent exact solutions for the NLK equation ut = x−2

[
x4(αux + γ u2)

]
x

for arbitrary constants α > 0,
γ > 0. Solutions arising from “nonclassical symmetries” are shown to yield wider classes of time-dependent exact
solutions for the NLK equation ut = x−2

[
x4(αux + γ u2)

]
x

beyond those obtained by Ibragimov. In particular,
for five classes of initial conditions, each involving two parameters, previously unknown explicit time-dependent
solutions are obtained. Interestingly, each of these solutions is expressed in terms of elementary functions. Three of
the classes exhibit quiescent behavior, i.e., limt→∞ u(x, t) = 0, and the other two classes exhibit blow-up behavior
in finite time. As a consequence, it is shown that the corresponding nontrivial stationary solutions are unstable.

Keywords Blow-up behavior · Invariant solution · Nonlinear Kompaneets equation · Nonclassical method ·
Stationary solution · Stability

1 Introduction

Group-theoretic methods are useful for finding symmetry reductions and corresponding group-invariant solutions
of a partial differential equation (PDE) system [1–3]. Classical symmetry reductions due to Lie [4] have been
generalized to the nonclassical method [5,6], in which one seeks local symmetries of an augmented PDE system
consisting of the given PDE system, the invariant surface condition, and their differential consequences. In contrast
to classical symmetries, “nonclassical symmetries” leave only submanifolds of solutions invariant. As a conse-
quence, the nonclassical method is useful for finding further specific solutions in addition to those obtained by the
classical Lie method.
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In this paper, we investigate the dimensional nonlinear Kompaneets (NLK) equation [7]
∂u

∂t
= 1

x2

∂

∂x

[
x4

(
αux + βu + γ u2

)]
, (1.1)

where α > 0, β ≥ 0, and γ > 0 are arbitrary constants. This equation, also known as the photon diffusion equation,
was first presented by Kompaneets [7], and in dimensionless form, after appropriate scalings of x, t , and u, can be
written as either

∂u

∂t
= 1

x2

∂

∂x

[
x4

(
ux + u + u2

)]
(1.2a)

when β �= 0 or

∂u

∂t
= 1

x2

∂

∂x

[
x4

(
ux + u2

)]
(1.2b)

in the case with dominant induced scattering β = 0 (i.e., u2 � u).
As stated in Ibragimov [8], the NLK equation (1.1) describes an interaction of free electrons and electromagnetic

radiation, specifically, the interaction of a low-energy homogeneous photon gas with a rarefied electron gas through
Compton scattering. In Eq. (1.1), u is the density of the photon gas (photon number density), t is a dimension-
less time, and x = h̄ν

kT
, where h̄ is Planck’s constant and ν is the photon frequency. Then h̄ν denotes the photon

energy. T is the electron temperature and k is Boltzmann’s constant. The terms u and u2 in Eq. (1.1) correspond to
spontaneous scattering (Compton effect) and induced scattering, respectively (see, e.g., [9]). Many numerical and
analytical solutions have been found for the NLK equation (1.1) (see, e.g., [10–15]).

Recently, time-dependent exact solutions of the NLK equation (1.2b) were obtained by Ibragimov [8]. The NLK
equation (1.2b) has two point symmetries

X1 = ∂

∂t
, X2 = x

∂

∂x
− u

∂

∂u
. (1.3)

Using these two point symmetries, Ibragimov obtained two sets of invariant solutions given by

u(x, t) = 1

x(1 − Ce2t )
, (1.4)

where C is an arbitrary constant, and

u(x, t) = φ(λ)

x
with λ = xeρt , (1.5)

where ρ is an arbitrary constant and φ(λ) satisfies the ordinary differential equation (ODE)

λφ′′ + (2φ + 2 − ρ)φ′ + 2

λ

(
φ2 − φ

)
= 0.

The purpose of this paper is to use the nonclassical method to seek further exact solutions of the NLK equation
(1.1). By construction, the solutions obtained by the nonclassical method of course include the solutions obtained
by Ibragimov [8]. More importantly, we obtain new explicit time-dependent solutions of the NLK equation (1.2b),
which are useful in practice. These new solutions cannot be obtained by classical symmetry reductions.

This paper is organized as follows. In Sect. 2, we review the nonclassical method and apply it to the NLK equa-
tions (1.2a) and (1.2b) to obtain their “nonclassical symmetries.” In Sect. 3, using the “nonclassical symmetries”
obtained in Sect. 2, we construct corresponding families of explicit solutions for the NLK equation (1.2b), which
cannot be found as invariant solutions for any of its local symmetries. Correspondingly, these new solutions yield
five families of solutions with initial conditions of physical interest. It is shown that three of these families of
solutions exhibit quiescent behavior, i.e., limt→∞ u(x, t) = 0, and that the other two families of solutions exhibit
blow-up behavior, i.e., limt→t∗ u(x, t∗) = ∞ for some finite t∗ depending on a constant in their initial conditions.
In Sect. 4, we consider nontrivial stationary solutions of (1.2b). We exhibit four families of stationary solutions not
presented explicitly in [14] for the NLK equation (1.1) for the case α = γ = 1 and β = 0. We show that two of
these families of stationary solutions are unstable using the results presented in Sect. 3.
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Nonclassical analysis of the NLK equation

2 Nonclassical analysis of the NLK equation

2.1 The nonclassical method

A symmetry of a PDE system leaves invariant the solution manifold of the PDE system. Invariant solutions of a
given PDE system arise from symmetries of the PDE system. These solutions are found by solving a corresponding
reduced PDE system with fewer independent variables. In [5], Lie’s method [4] was generalized to the nonclassical
method. In the nonclassical method, one seeks local symmetries that leave only a submanifold of the solution
manifold invariant. Such a “nonclassical symmetry” maps solution surfaces not in the submanifold to surfaces that
are not solutions of the PDE system.

Consider a PDE system R{x; u} of N PDEs of order k with n independent variables x = (
x1, . . . , xn

)
and m

dependent variables u(x) = (
u1(x), . . . , um(x)

)
, given by

Rσ [u] ≡ Rσ
(
x, u, ∂u, . . . , ∂ku

)
= 0, σ = 1, . . . , N. (2.1)

In the nonclassical method, instead of seeking local symmetries of the given PDE system R{x; u} (2.1), one seeks
local symmetries that leave invariant a submanifold of the solution manifold of the PDE system R{x; u} (2.1).
In particular, one seeks functions ξ i(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . , m, so that

X = ξ i(x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
(2.2)

is a “symmetry” (“nonclassical symmetry”) of the submanifold, which is the augmented PDE system A{x; u}
consisting of the given PDE system R{x; u} (2.1), the invariant surface condition equations

Iν(x, u, ∂u) ≡ ην(x, u) − ξj (x, u)
∂uν

∂xj
= 0, ν = 1, . . . , m, (2.3)

and their differential consequences. Consequently, one obtains an overdetermined set of nonlinear determining
equations for the unknown functions ξ i(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . , m.

Indeed, for any functions ξ i(x, u), ημ(x, u), i = 1, . . . , n, μ = 1, . . . , m, one has

X(1)Iν(x, u, ∂u) =
(

∂ην

∂uμ
− ∂ξj

∂uμ

∂uν

∂xj

)
· Iμ, ν = 1, . . . , m, (2.4)

which vanish for Iν(x, u, ∂u) = 0, ν = 1, . . . , m, where X(1) is the first extension of the infinitesimal generator
(2.2). Therefore, the nonclassical method includes Lie’s classical method.

In the nonclassical method, invariance of the given PDE system R{x; u} (2.1) is replaced by invariance of the
augmented PDE system A{x; u}. Consequently, it is possible to find symmetries leaving invariant the augmented
PDE system A{x; u} which are not symmetries of the given PDE system R{x; u} (2.1). In turn, this can lead to
further exact solutions of the given PDE system R{x; u} (2.1).

Consider a scalar PDE with two independent variables. Let x1 = x, x2 = t , ξ1 = ξ(x, t, u), ξ2 = τ(x, t, u).
Without loss of generality, one need only consider two essential cases when solving the determining equations for
(ξ(x, t, u), τ (x, t, u), η(x, t, u)). If the infinitesimal generator X = ξ(x, t, u) ∂

∂x
+ τ(x, t, u) ∂

∂t
+η(x, t, u) ∂

∂u
gen-

erates a “nonclassical symmetry” of the PDE system R{x; u} (2.1), then so does Y = p(x, t, u)X, where p(x, t, u)

is any smooth function. It follows that, if τ �= 0, one can set τ ≡ 1, so that only two cases need to be considered:
τ ≡ 1 and τ ≡ 0, ξ ≡ 1.

2.2 Nonclassical analysis of the NLK equation

The nonclassical method is now applied to the NLK equations (1.2a) and (1.2b), respectively. Here the invariant
surface condition equation becomes

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u). (2.5)
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2.2.1 Nonclassical symmetries of the NLK equation (1.2a)

Case I τ ≡ 1.

The nonclassical method applied to (1.2a) yields the following determining equation system for the infinitesimals
(ξ(x, t, u), η(x, t, u)):

2ξxη−8xuη − 2ξη

x
−4xη + 4u2ξ + 4uξ + ηt −x2ηxx −4xηx + 4xu2ηu − 2x2uηx − x2ηx − 8xu2ξx + 4xuηu

− 8xuξx = 0, (2.6a)

4ξ − 2x2η + 2ξ2

x
− ξt − 2x2uξx − 2x2ηxu + 2ξuη − 12xu2ξu − 12xuξu − 4xξx + x2ξxx − x2ξx − 2ξξx = 0,

(2.6b)

2x2ξxu − 2x2ξu − 4x2uξu − 8xξu − x2ηuu − 2ξuξ = 0, (2.6c)

x2ξuu = 0. (2.6d)

The solution of the determining equation system (2.6a–d) is given by
{

ξ(x, t, u) = 0,

η(x, t, u) = 0.
(2.7)

Hence the corresponding “nonclassical symmetry” is Y1 = ∂
∂t

, which directly results from the point symmetry X1.

Case II τ ≡ 0, ξ ≡ 1.

In this case, the determining equation for η(x, t, u) is

4xuηu − x2η2ηuu − 2x2ηηxu − 4u − 4u2 − 4η + ηt − x2ηxx − 6xηx − 6xη − 2x2η2

− x2ηx + 4xu2ηu − 2x2uηx − 12xuη − 2xηηu = 0.
(2.8)

One is unable to find the general solution of (2.8). Hence one must consider ansatzes to obtain particular solutions
of (2.8). If one considers an ansatz of the form η = f (x, t) + g(x, t)u + h(x, t)u2, one obtains

η(x, t, u) = a1

x4 − u − u2, (2.9)

where a1 is an arbitrary constant. The corresponding “nonclassical symmetry” is Y2 = ∂
∂x

+
(

a1
x4 − u − u2

)
∂
∂u

.

2.2.2 Nonclassical symmetries of the NLK equation (1.2b)

Case I τ ≡ 1.

The nonclassical method applied to (1.2b) yields the following determining equation system for the infinitesimals
(ξ(x, t, u), η(x, t, u)):

4u2ξ − 8xu2ξx − 2ξη

x
− 2x2uηx − 8xuη − x2ηxx + ηt + 4xu2ηu + 2ξxη − 4xηx = 0, (2.10a)

x2ξxx − 12xu2ξu − 2x2uξx − 2ξxξ − ξt − 2x2η + 4ξ + 2ξ2

x
+ 2ξuη − 2x2ηxu − 4xξx = 0, (2.10b)

2x2ξxu − 4x2uξu − 8xξu − 2ξξu − x2ηuu = 0, (2.10c)

x2ξuu = 0. (2.10d)
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The solutions of the determining equation system (2.10a–d) are given by
{

ξ(x, t, u) = a2x,

η(x, t, u) = −a2u,
(2.11)

where a2 is an arbitrary constant, and
{

ξ(x, t, u) = −2x2u,

η(x, t, u) = 4xu2 − 2u.
(2.12)

The solution (2.11) yields the “nonclassical symmetry” Y3 = a2x
∂
∂x

+ ∂
∂t

− a2u
∂
∂u

, which directly results from
the point symmetry X1 + a2X2. The solution (2.12) yields the “nonclassical symmetry” Y4 = −2x2u ∂

∂x
+ ∂

∂t
+(

4xu2 − 2u
)

∂
∂u

, which does not result from any point symmetry of (1.2b).

Case II τ ≡ 0, ξ ≡ 1.

In this case, the determining equation for η(x, t, u) is

− 4η−4u2−6xηx − 2xηηu−12xuη − 2x2η2 − 2x2uηx + ηt + 4xu2ηu−x2ηxx −2x2ηηxu − x2η2ηuu = 0.

(2.13)

If one considers an ansatz of the form η = f (x, t) + g(x, t)u + h(x, t)u2, the equation (2.13) has solutions

η(x, t, u) = c2e−2t

x2
(
c1 + c2e−2t − x

) +
(
x − 2c1 − 2c2e−2t

)
u

x
(
c1 + c2e−2t − x

) , (2.14)

η(x, t, u) = 1

x2
(
1 + c3e2t

) − 2u

x
, (2.15)

η(x, t, u) = c4

x4 − u2, (2.16)

where c1, c2, c3, and c4 are arbitrary constants.

Hence, the corresponding “nonclassical symmetries” are Y5 = ∂
∂x

+
[

c2e−2t

x2(c1+c2e−2t−x)
+

(
x−2c1−2c2e−2t

)
u

x(c1+c2e−2t−x)

]
∂
∂u

,

Y6 = ∂
∂x

+
[

1
x2(1+c3e2t )

− 2u
x

]
∂
∂u

, and Y7 = ∂
∂x

+
(

c4
x4 − u2

)
∂
∂u

, respectively.

3 New exact solutions of the NLK equation

It is obvious that the invariant solutions arising from Y1 and Y3 are those obtained by Ibragimov [8], given by
solutions (1.4) and (1.5). Moreover, the invariant solution corresponding to Y2 is the stationary solution obtained
by Dubinov [14] for the NLK equation (1.2a).

Consider the “nonclassical symmetry” Y4 of the NLK equation (1.2b). Using the direct substitution method, one
seeks solutions of the PDE system

⎧
⎪⎨

⎪⎩

ut = 4x
(
ux + u2

)
+ x2(uxx + 2uux), (3.1)

ut = 2x2uux +
(

4xu2 − 2u
)

. (3.2)

After equating the right-hand sides of (3.1) and (3.2), one obtains

4xux + x2uxx + 2u = 0. (3.3)

The solution of (3.3) is given by

u(x, t) = A(t) + B(t)x

x2 , (3.4)
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(a) (b)

Fig. 1 (a) u(x, 0) = U(x) = b(x−c)

x2 , 0 < b < 1, c ≤ 0, x > 0. In (b), u(x, t) is given by Eq. (3.11) for x > 0, t > 0, with the arrow
pointing in the direction of increasing t

where A(t) and B(t) are arbitrary functions. Substituting (3.4) into (3.1), one obtains an ordinary differential
equation (ODE) system for A(t) and B(t):

{
A′(t) + 2A(t) − 2A(t)B(t) = 0, (3.5)

B ′(t) + 2B(t) − 2B(t)2 = 0. (3.6)

From (3.6), one obtains B(t) ≡ 0 or B(t) = 1
1+De2t , where D is an arbitrary constant. In particular, there are three

families of solutions when B(t) �≡ 0. In terms of an arbitrary constant t0, −∞ < t0 < ∞, these solutions are
given by

B(t) = 1

2
[1 − tanh(t + t0)] , where 0 < B(t) < 1;

B(t) = 1

2
[1 − coth(t + t0)] , where

{
B(t) < 0 if t > −t0,

B(t) > 1 if t < −t0;
B(t) ≡ 1.

If B(t) �≡ 0, one has A(t) = −cB(t), where c is an arbitrary constant. If B(t) ≡ 0, one has A(t) = Ee−2t ,
where E is an arbitrary constant. Therefore, there are four families of solutions of (1.2b):

F1 : u(x, t) = x − c

2x2 [1 − tanh(t + t0)] ; (3.7)

F2 : u(x, t) = x − c

2x2 [1 − coth(t + t0)] ; (3.8)

F3 : u(x, t) = x − c

x2 ; (3.9)

F4 : u(x, t) = E

x2e2t
. (3.10)

The first two families of solutions F1 and F2 are new and cannot be obtained through classical symmetry reductions.
The corresponding initial conditions u(x, 0) = U(x) are given below.

For F1:

Case I U(x) = b(x−c)

x2 with 0 < b < 1, c ≤ 0, on the domain 0 < x < ∞. Such a U(x) is illustrated in Fig. 1a.
The corresponding solutions of (1.2b) are given by

u(x, t) = x − c

2x2 [1 − tanh(t + t0)] (3.11)
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(a) (b)

Fig. 2 (a) u(x, 0) = U(x) = b(x−c)

x2 , 0 < b < 1, c > 0, x ≥ c. In (b), u(x, t) is given by Eq. (3.12) for x ≥ c, t > 0, with the arrow
pointing in the direction of increasing t

(a) (b)

Fig. 3 (a) u(x, 0) = U(x) = b(x−c)

x2 , b < 0, c > 0, 0 < x ≤ c. In (b), u(x, t) is given by Eq. (3.13) for 0 < x ≤ c, t > 0, with the
arrow pointing in the direction of increasing t

with constants t0 = 1
2 ln

( 1
b

− 1
)
, 0 < b < 1, and c ≤ 0, valid for x > 0, t > 0. For each value of x, the

solution u(x, t) is monotonically decreasing as a function of t . Moreover, limt→∞ u(x, t) = 0 for any
x > 0. The evolution of a solution u(x, t) is illustrated in Fig. 1b.

Case II U(x) = b(x−c)

x2 with 0 < b < 1, c > 0, on the domain x ≥ c. Such a U(x) is illustrated in Fig. 2a. The
corresponding solutions of (1.2b) are given by

u(x, t) = x − c

2x2 [1 − tanh(t + t0)] (3.12)

with constants t0 = 1
2 ln

( 1
b

− 1
)
, 0 < b < 1, and c > 0, valid for x ≥ c, t > 0. For each value of x, the

solution u(x, t) is monotonically decreasing as a function of t . Moreover, limt→∞ u(x, t) = 0 for any
x ≥ c. The evolution of a solution u(x, t) is illustrated in Fig. 2b.

For F2 :
Case III U(x) = b(x−c)

x2 with b < 0, c > 0, on the domain 0 < x ≤ c. Such a U(x) is illustrated in Fig. 3a. The
corresponding solutions of (1.2b) are given by

u(x, t) = x − c

2x2 [1 − coth(t + t0)] (3.13)
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(a) (b)

Fig. 4 (a) u(x, 0) = U(x) = b(x−c)

x2 , b > 1, c > 0, x ≥ c. In (b), u(x, t) is given by Eq. (3.14) for x ≥ c, 0 < t < −t0, with the
arrow pointing in the direction of increasing t

(a) (b)

Fig. 5 (a) u(x, 0) = U(x) = b(x−c)

x2 , b > 1, c ≤ 0, x > 0. In (b), u(x, t) is given by Eq. (3.15) for x > 0, 0 < t < −t0, with the
arrow pointing in the direction of increasing t

with constants t0 = 1
2 ln

(
1 − 1

b

)
, b < 0, and c > 0, valid for 0 < x ≤ c, t > 0. For each value of x,

the solution u(x, t) is monotonically decreasing as a function of t . Moreover, limt→∞ u(x, t) = 0 for
0 < x ≤ c. The evolution of a solution u(x, t) is illustrated in Fig. 3b.

Case IV U(x) = b(x−c)

x2 with b > 1, c > 0, on the domain x ≥ c. Such a U(x) is illustrated in Fig. 4a. The
corresponding solutions of (1.2b) are given by

u(x, t) = x − c

2x2 [1 − coth(t + t0)] (3.14)

with constants t0 = 1
2 ln

(
1 − 1

b

)
,b > 1, and c > 0, valid for x ≥ c, 0 < t < −t0. For each value ofx, the

solution u(x, t) is monotonically increasing as a function of t . Moreover, lim
t→− 1

2 ln
(

1− 1
b

) u(x, t) = ∞
for each value of x ≥ c. The evolution of a solution u(x, t) is illustrated in Fig. 4b.

Case V U(x) = b(x−c)

x2 with b > 1, c ≤ 0, on the domain x > 0. Such a U(x) is illustrated in Fig. 5a. The
corresponding solutions of (1.2b) are given by

u(x, t) = x − c

2x2 [1 − coth(t + t0)] (3.15)
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with constants t0 = 1
2 ln

(
1 − 1

b

)
,b > 1, and c ≤ 0, valid forx > 0, 0 < t < −t0. For each value ofx, the

solution u(x, t) is monotonically increasing as a function of t . Moreover, lim
t→− 1

2 ln
(

1− 1
b

) u(x, t) = ∞
for each value of x > 0. The evolution of a solution u(x, t) is illustrated in Fig. 5b.

4 Stationary solutions

Stationary solutions of the NLK equation (1.1) were found in [14] in terms of the doubly degenerate Heun’s function
(HeunD) and its derivative (HeunD′). A stationary solution u(x, t) ≡ V (x) of the NLK equation (1.2b) satisfies
the ODE

V ′(x) + V 2 = Q

x4 (4.1)

for some constant Q which represents the photon flux in the frequency domain. One can show that a nontrivial
stationary solution

V (x) = b(x − c)

x2 (4.2)

satisfies Eq. (4.1) for some constant Q if and only if b = 1 and c is an arbitrary constant. Consequently, Q = c2.
Interestingly, the explicit family of solutions V (x) = x−c

x2 is not exhibited in [14]. For c > 0, V (x) is exhibited in
Fig. 6; for c ≤ 0, V (x) is exhibited in Fig. 7.

From the solutions obtained in Sect. 3, we see that all of these nontrivial stationary solutions are unstable, since
a slight change in the initial condition will lead to a solution blowing up in finite time or decaying to the trivial
stationary solution u(x, t) ≡ 0 as t → ∞.

Moreover, if one applies the “nonclassical symmetry” Y7 to the NLK equation (1.2b), one obtains two more
families of explicit stationary solutions, F5 and F6.

The family of stationary solutions F5, in terms of an arbitrary positive constant a, is given by

F5: V (x) = x + a tan
(

a
x

)

x2 , (4.3)

Fig. 6 The stationary solution V (x) = x−c
x2 , c > 0 Fig. 7 The stationary solution V (x) = x−c

x2 , c ≤ 0
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(a) (b)

Fig. 8 (a) The stationary solution V (x) = x+a tan( a
x )

x2 , x > 2a
π

. (b) The stationary solution V (x) = x+a tan( a
x )

x2 , 2a
(2k+1)π

< x ≤ xk

Fig. 9 The stationary solution V (x) = x−a tanh( a
x )

x2 , x ≥ δ

valid on the domains:

(1) x > 2a
π

, illustrated in Fig. 8a;

(2) 2a
(2k+1)π

< x ≤ xk , where xk ∈
(

2a
(2k+1)π

, 2a
(2k−1)π

)
satisfies xk + a tan

(
a
xk

)
= 0, k = 1, 2, . . ., illustrated in

Fig. 8b.

The family of stationary solutions F6, in terms of an arbitrary positive constant a, is given by

F6 : V (x) = x − a tanh
(

a
x

)

x2 , (4.4)

valid on the domain x ≥ δ, where δ is the unique positive solution of the equation δ−a tanh
(

a
δ

) = 0. The maximum
value of V (x) occurs at x = σ = 2a

1 + LambertW(e−1)
, in terms of the Lambert W function. Such a solution is illustrated

in Fig. 9.
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5 Conclusions

In this paper, we used the nonclassical method to obtain some previously unknown solutions of the NLK equa-
tion (1.2b). These solutions do not arise as invariant solutions of the NLK equation (1.2b) with respect to its
local symmetries. It is interesting to note that the newly obtained exact solutions are explicit solutions of (1.2b)
expressed in terms of elementary functions. It is further observed that these solutions exhibit both quiescent and
blow-up behavior depending on their initial conditions. It is also shown that related stationary solutions are unstable.
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